Shadow Ground ShaderΒΆ

Vertex shader instance source:

#extension GL_OES_standard_derivatives : enable
precision highp float;
precision highp int;
#define HIGH_PRECISION
#define SHADER_NAME MeshPhongMaterial
#define GAMMA_FACTOR 2
#define USE_MAP
#define USE_UV
#define DOUBLE_SIDED
#define USE_SHADOWMAP
#define SHADOWMAP_TYPE_PCF_SOFT
uniform mat4 viewMatrix;
uniform vec3 cameraPosition;
uniform bool isOrthographic;
#define TONE_MAPPING
#ifndef saturate
#define saturate(a) clamp( a, 0.0, 1.0 )
#endif
uniform float toneMappingExposure;
uniform float toneMappingWhitePoint;
vec3 LinearToneMapping( vec3 color ) {
    return toneMappingExposure * color;
}
vec3 ReinhardToneMapping( vec3 color ) {
    color *= toneMappingExposure;
    return saturate( color / ( vec3( 1.0 ) + color ) );
}
#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )
vec3 Uncharted2ToneMapping( vec3 color ) {
    color *= toneMappingExposure;
    return saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );
}
vec3 OptimizedCineonToneMapping( vec3 color ) {
    color *= toneMappingExposure;
    color = max( vec3( 0.0 ), color - 0.004 );
    return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );
}
vec3 ACESFilmicToneMapping( vec3 color ) {
    color *= toneMappingExposure;
    return saturate( ( color * ( 2.51 * color + 0.03 ) ) / ( color * ( 2.43 * color + 0.59 ) + 0.14 ) );
}
vec3 toneMapping( vec3 color ) { return LinearToneMapping( color ); }

vec4 LinearToLinear( in vec4 value ) {
    return value;
}
vec4 GammaToLinear( in vec4 value, in float gammaFactor ) {
    return vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );
}
vec4 LinearToGamma( in vec4 value, in float gammaFactor ) {
    return vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );
}
vec4 sRGBToLinear( in vec4 value ) {
    return vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );
}
vec4 LinearTosRGB( in vec4 value ) {
    return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );
}
vec4 RGBEToLinear( in vec4 value ) {
    return vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );
}
vec4 LinearToRGBE( in vec4 value ) {
    float maxComponent = max( max( value.r, value.g ), value.b );
    float fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );
    return vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );
}
vec4 RGBMToLinear( in vec4 value, in float maxRange ) {
    return vec4( value.rgb * value.a * maxRange, 1.0 );
}
vec4 LinearToRGBM( in vec4 value, in float maxRange ) {
    float maxRGB = max( value.r, max( value.g, value.b ) );
    float M = clamp( maxRGB / maxRange, 0.0, 1.0 );
    M = ceil( M * 255.0 ) / 255.0;
    return vec4( value.rgb / ( M * maxRange ), M );
}
vec4 RGBDToLinear( in vec4 value, in float maxRange ) {
    return vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );
}
vec4 LinearToRGBD( in vec4 value, in float maxRange ) {
    float maxRGB = max( value.r, max( value.g, value.b ) );
    float D = max( maxRange / maxRGB, 1.0 );
    D = min( floor( D ) / 255.0, 1.0 );
    return vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );
}
const mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );
vec4 LinearToLogLuv( in vec4 value )  {
    vec3 Xp_Y_XYZp = cLogLuvM * value.rgb;
    Xp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );
    vec4 vResult;
    vResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;
    float Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;
    vResult.w = fract( Le );
    vResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;
    return vResult;
}
const mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );
vec4 LogLuvToLinear( in vec4 value ) {
    float Le = value.z * 255.0 + value.w;
    vec3 Xp_Y_XYZp;
    Xp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );
    Xp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;
    Xp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;
    vec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;
    return vec4( max( vRGB, 0.0 ), 1.0 );
}
vec4 mapTexelToLinear( vec4 value ) { return LinearToLinear( value ); }
vec4 matcapTexelToLinear( vec4 value ) { return LinearToLinear( value ); }
vec4 envMapTexelToLinear( vec4 value ) { return LinearToLinear( value ); }
vec4 emissiveMapTexelToLinear( vec4 value ) { return LinearToLinear( value ); }
vec4 linearToOutputTexel( vec4 value ) { return LinearToLinear( value ); }

#define PHONG
uniform vec3 diffuse;
uniform vec3 emissive;
uniform vec3 specular;
uniform float shininess;
uniform float opacity;
#define PI 3.14159265359
#define PI2 6.28318530718
#define PI_HALF 1.5707963267949
#define RECIPROCAL_PI 0.31830988618
#define RECIPROCAL_PI2 0.15915494
#define LOG2 1.442695
#define EPSILON 1e-6
#ifndef saturate
#define saturate(a) clamp( a, 0.0, 1.0 )
#endif
#define whiteComplement(a) ( 1.0 - saturate( a ) )
float pow2( const in float x ) { return x*x; }
float pow3( const in float x ) { return x*x*x; }
float pow4( const in float x ) { float x2 = x*x; return x2*x2; }
float average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }
highp float rand( const in vec2 uv ) {
    const highp float a = 12.9898, b = 78.233, c = 43758.5453;
    highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
    return fract(sin(sn) * c);
}
#ifdef HIGH_PRECISION
    float precisionSafeLength( vec3 v ) { return length( v ); }
#else
    float max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }
    float precisionSafeLength( vec3 v ) {
        float maxComponent = max3( abs( v ) );
        return length( v / maxComponent ) * maxComponent;
    }
#endif
struct IncidentLight {
    vec3 color;
    vec3 direction;
    bool visible;
};
struct ReflectedLight {
    vec3 directDiffuse;
    vec3 directSpecular;
    vec3 indirectDiffuse;
    vec3 indirectSpecular;
};
struct GeometricContext {
    vec3 position;
    vec3 normal;
    vec3 viewDir;
#ifdef CLEARCOAT
    vec3 clearcoatNormal;
#endif
};
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
    return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {
    return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );
}
vec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {
    float distance = dot( planeNormal, point - pointOnPlane );
    return - distance * planeNormal + point;
}
float sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {
    return sign( dot( point - pointOnPlane, planeNormal ) );
}
vec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {
    return lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;
}
mat3 transposeMat3( const in mat3 m ) {
    mat3 tmp;
    tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );
    tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );
    tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );
    return tmp;
}
float linearToRelativeLuminance( const in vec3 color ) {
    vec3 weights = vec3( 0.2126, 0.7152, 0.0722 );
    return dot( weights, color.rgb );
}
bool isPerspectiveMatrix( mat4 m ) {
  return m[ 2 ][ 3 ] == - 1.0;
}
vec3 packNormalToRGB( const in vec3 normal ) {
    return normalize( normal ) * 0.5 + 0.5;
}
vec3 unpackRGBToNormal( const in vec3 rgb ) {
    return 2.0 * rgb.xyz - 1.0;
}
const float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;
const vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );
const vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );
const float ShiftRight8 = 1. / 256.;
vec4 packDepthToRGBA( const in float v ) {
    vec4 r = vec4( fract( v * PackFactors ), v );
    r.yzw -= r.xyz * ShiftRight8;    return r * PackUpscale;
}
float unpackRGBAToDepth( const in vec4 v ) {
    return dot( v, UnpackFactors );
}
vec4 encodeHalfRGBA ( vec2 v ) {
    vec4 encoded = vec4( 0.0 );
    const vec2 offset = vec2( 1.0 / 255.0, 0.0 );
    encoded.xy = vec2( v.x, fract( v.x * 255.0 ) );
    encoded.xy = encoded.xy - ( encoded.yy * offset );
    encoded.zw = vec2( v.y, fract( v.y * 255.0 ) );
    encoded.zw = encoded.zw - ( encoded.ww * offset );
    return encoded;
}
vec2 decodeHalfRGBA( vec4 v ) {
    return vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );
}
float viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {
    return ( viewZ + near ) / ( near - far );
}
float orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {
    return linearClipZ * ( near - far ) - near;
}
float viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {
    return (( near + viewZ ) * far ) / (( far - near ) * viewZ );
}
float perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {
    return ( near * far ) / ( ( far - near ) * invClipZ - far );
}
#ifdef DITHERING
    vec3 dithering( vec3 color ) {
        float grid_position = rand( gl_FragCoord.xy );
        vec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );
        dither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );
        return color + dither_shift_RGB;
    }
#endif
#ifdef USE_COLOR
    varying vec3 vColor;
#endif
#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )
    varying vec2 vUv;
#endif
#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )
    varying vec2 vUv2;
#endif
#ifdef USE_MAP
    uniform sampler2D map;
#endif
#ifdef USE_ALPHAMAP
    uniform sampler2D alphaMap;
#endif
#ifdef USE_AOMAP
    uniform sampler2D aoMap;
    uniform float aoMapIntensity;
#endif
#ifdef USE_LIGHTMAP
    uniform sampler2D lightMap;
    uniform float lightMapIntensity;
#endif
#ifdef USE_EMISSIVEMAP
    uniform sampler2D emissiveMap;
#endif
#ifdef USE_ENVMAP
    uniform float envMapIntensity;
    uniform float flipEnvMap;
    uniform int maxMipLevel;
    #ifdef ENVMAP_TYPE_CUBE
        uniform samplerCube envMap;
    #else
        uniform sampler2D envMap;
    #endif

#endif
#ifdef USE_ENVMAP
    uniform float reflectivity;
    #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )
        #define ENV_WORLDPOS
    #endif
    #ifdef ENV_WORLDPOS
        varying vec3 vWorldPosition;
        uniform float refractionRatio;
    #else
        varying vec3 vReflect;
    #endif
#endif
#ifdef TOON
    uniform sampler2D gradientMap;
    vec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {
        float dotNL = dot( normal, lightDirection );
        vec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );
        #ifdef USE_GRADIENTMAP
            return texture2D( gradientMap, coord ).rgb;
        #else
            return ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );
        #endif
    }
#endif
#ifdef USE_FOG
    uniform vec3 fogColor;
    varying float fogDepth;
    #ifdef FOG_EXP2
        uniform float fogDensity;
    #else
        uniform float fogNear;
        uniform float fogFar;
    #endif
#endif
vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {
    const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );
    const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );
    vec4 r = roughness * c0 + c1;
    float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;
    return vec2( -1.04, 1.04 ) * a004 + r.zw;
}
float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {
#if defined ( PHYSICALLY_CORRECT_LIGHTS )
    float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );
    if( cutoffDistance > 0.0 ) {
        distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );
    }
    return distanceFalloff;
#else
    if( cutoffDistance > 0.0 && decayExponent > 0.0 ) {
        return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );
    }
    return 1.0;
#endif
}
vec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {
    return RECIPROCAL_PI * diffuseColor;
}
vec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {
    float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );
    return ( 1.0 - specularColor ) * fresnel + specularColor;
}
vec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {
    float fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );
    vec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;
    return Fr * fresnel + F0;
}
float G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {
    float a2 = pow2( alpha );
    float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );
    float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );
    return 1.0 / ( gl * gv );
}
float G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {
    float a2 = pow2( alpha );
    float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );
    float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );
    return 0.5 / max( gv + gl, EPSILON );
}
float D_GGX( const in float alpha, const in float dotNH ) {
    float a2 = pow2( alpha );
    float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;
    return RECIPROCAL_PI * a2 / pow2( denom );
}
vec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {
    float alpha = pow2( roughness );
    vec3 halfDir = normalize( incidentLight.direction + viewDir );
    float dotNL = saturate( dot( normal, incidentLight.direction ) );
    float dotNV = saturate( dot( normal, viewDir ) );
    float dotNH = saturate( dot( normal, halfDir ) );
    float dotLH = saturate( dot( incidentLight.direction, halfDir ) );
    vec3 F = F_Schlick( specularColor, dotLH );
    float G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );
    float D = D_GGX( alpha, dotNH );
    return F * ( G * D );
}
vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {
    const float LUT_SIZE  = 64.0;
    const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
    const float LUT_BIAS  = 0.5 / LUT_SIZE;
    float dotNV = saturate( dot( N, V ) );
    vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );
    uv = uv * LUT_SCALE + LUT_BIAS;
    return uv;
}
float LTC_ClippedSphereFormFactor( const in vec3 f ) {
    float l = length( f );
    return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );
}
vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {
    float x = dot( v1, v2 );
    float y = abs( x );
    float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;
    float b = 3.4175940 + ( 4.1616724 + y ) * y;
    float v = a / b;
    float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;
    return cross( v1, v2 ) * theta_sintheta;
}
vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {
    vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];
    vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];
    vec3 lightNormal = cross( v1, v2 );
    if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );
    vec3 T1, T2;
    T1 = normalize( V - N * dot( V, N ) );
    T2 = - cross( N, T1 );
    mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );
    vec3 coords[ 4 ];
    coords[ 0 ] = mat * ( rectCoords[ 0 ] - P );
    coords[ 1 ] = mat * ( rectCoords[ 1 ] - P );
    coords[ 2 ] = mat * ( rectCoords[ 2 ] - P );
    coords[ 3 ] = mat * ( rectCoords[ 3 ] - P );
    coords[ 0 ] = normalize( coords[ 0 ] );
    coords[ 1 ] = normalize( coords[ 1 ] );
    coords[ 2 ] = normalize( coords[ 2 ] );
    coords[ 3 ] = normalize( coords[ 3 ] );
    vec3 vectorFormFactor = vec3( 0.0 );
    vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );
    vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );
    vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );
    vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );
    float result = LTC_ClippedSphereFormFactor( vectorFormFactor );
    return vec3( result );
}
vec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {
    float dotNV = saturate( dot( normal, viewDir ) );
    vec2 brdf = integrateSpecularBRDF( dotNV, roughness );
    return specularColor * brdf.x + brdf.y;
}
void BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {
    float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );
    vec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );
    vec2 brdf = integrateSpecularBRDF( dotNV, roughness );
    vec3 FssEss = F * brdf.x + brdf.y;
    float Ess = brdf.x + brdf.y;
    float Ems = 1.0 - Ess;
    vec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;    vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );
    singleScatter += FssEss;
    multiScatter += Fms * Ems;
}
float G_BlinnPhong_Implicit( ) {
    return 0.25;
}
float D_BlinnPhong( const in float shininess, const in float dotNH ) {
    return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );
}
vec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {
    vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );
    float dotNH = saturate( dot( geometry.normal, halfDir ) );
    float dotLH = saturate( dot( incidentLight.direction, halfDir ) );
    vec3 F = F_Schlick( specularColor, dotLH );
    float G = G_BlinnPhong_Implicit( );
    float D = D_BlinnPhong( shininess, dotNH );
    return F * ( G * D );
}
float GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {
    return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );
}
float BlinnExponentToGGXRoughness( const in float blinnExponent ) {
    return sqrt( 2.0 / ( blinnExponent + 2.0 ) );
}
#if defined( USE_SHEEN )
float D_Charlie(float roughness, float NoH) {
    float invAlpha  = 1.0 / roughness;
    float cos2h = NoH * NoH;
    float sin2h = max(1.0 - cos2h, 0.0078125);    return (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);
}
float V_Neubelt(float NoV, float NoL) {
    return saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));
}
vec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {
    vec3 N = geometry.normal;
    vec3 V = geometry.viewDir;
    vec3 H = normalize( V + L );
    float dotNH = saturate( dot( N, H ) );
    return specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );
}
#endif
uniform bool receiveShadow;
uniform vec3 ambientLightColor;
uniform vec3 lightProbe[ 9 ];
vec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {
    float x = normal.x, y = normal.y, z = normal.z;
    vec3 result = shCoefficients[ 0 ] * 0.886227;
    result += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;
    result += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;
    result += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;
    result += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;
    result += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;
    result += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );
    result += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;
    result += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );
    return result;
}
vec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {
    vec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );
    vec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );
    return irradiance;
}
vec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {
    vec3 irradiance = ambientLightColor;
    #ifndef PHYSICALLY_CORRECT_LIGHTS
        irradiance *= PI;
    #endif
    return irradiance;
}
#if 1 > 0
    struct DirectionalLight {
        vec3 direction;
        vec3 color;
        int shadow;
        float shadowBias;
        float shadowRadius;
        vec2 shadowMapSize;
    };
    uniform DirectionalLight directionalLights[ 1 ];
    void getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {
        directLight.color = directionalLight.color;
        directLight.direction = directionalLight.direction;
        directLight.visible = true;
    }
#endif
#if 0 > 0
    struct PointLight {
        vec3 position;
        vec3 color;
        float distance;
        float decay;
        int shadow;
        float shadowBias;
        float shadowRadius;
        vec2 shadowMapSize;
        float shadowCameraNear;
        float shadowCameraFar;
    };
    uniform PointLight pointLights[ 0 ];
    void getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {
        vec3 lVector = pointLight.position - geometry.position;
        directLight.direction = normalize( lVector );
        float lightDistance = length( lVector );
        directLight.color = pointLight.color;
        directLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );
        directLight.visible = ( directLight.color != vec3( 0.0 ) );
    }
#endif
#if 0 > 0
    struct SpotLight {
        vec3 position;
        vec3 direction;
        vec3 color;
        float distance;
        float decay;
        float coneCos;
        float penumbraCos;
        int shadow;
        float shadowBias;
        float shadowRadius;
        vec2 shadowMapSize;
    };
    uniform SpotLight spotLights[ 0 ];
    void getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight  ) {
        vec3 lVector = spotLight.position - geometry.position;
        directLight.direction = normalize( lVector );
        float lightDistance = length( lVector );
        float angleCos = dot( directLight.direction, spotLight.direction );
        if ( angleCos > spotLight.coneCos ) {
            float spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );
            directLight.color = spotLight.color;
            directLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );
            directLight.visible = true;
        } else {
            directLight.color = vec3( 0.0 );
            directLight.visible = false;
        }
    }
#endif
#if 0 > 0
    struct RectAreaLight {
        vec3 color;
        vec3 position;
        vec3 halfWidth;
        vec3 halfHeight;
    };
    uniform sampler2D ltc_1;    uniform sampler2D ltc_2;
    uniform RectAreaLight rectAreaLights[ 0 ];
#endif
#if 0 > 0
    struct HemisphereLight {
        vec3 direction;
        vec3 skyColor;
        vec3 groundColor;
    };
    uniform HemisphereLight hemisphereLights[ 0 ];
    vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {
        float dotNL = dot( geometry.normal, hemiLight.direction );
        float hemiDiffuseWeight = 0.5 * dotNL + 0.5;
        vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );
        #ifndef PHYSICALLY_CORRECT_LIGHTS
            irradiance *= PI;
        #endif
        return irradiance;
    }
#endif
varying vec3 vViewPosition;
#ifndef FLAT_SHADED
    varying vec3 vNormal;
#endif
struct BlinnPhongMaterial {
    vec3    diffuseColor;
    vec3    specularColor;
    float    specularShininess;
    float    specularStrength;
};
void RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {
    #ifdef TOON
        vec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;
    #else
        float dotNL = saturate( dot( geometry.normal, directLight.direction ) );
        vec3 irradiance = dotNL * directLight.color;
    #endif
    #ifndef PHYSICALLY_CORRECT_LIGHTS
        irradiance *= PI;
    #endif
    reflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );
    reflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;
}
void RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {
    reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );
}
#define RE_Direct                RE_Direct_BlinnPhong
#define RE_IndirectDiffuse        RE_IndirectDiffuse_BlinnPhong
#define Material_LightProbeLOD( material )    (0)
#ifdef USE_SHADOWMAP
    #if 1 > 0
        uniform sampler2D directionalShadowMap[ 1 ];
        varying vec4 vDirectionalShadowCoord[ 1 ];
    #endif
    #if 0 > 0
        uniform sampler2D spotShadowMap[ 0 ];
        varying vec4 vSpotShadowCoord[ 0 ];
    #endif
    #if 0 > 0
        uniform sampler2D pointShadowMap[ 0 ];
        varying vec4 vPointShadowCoord[ 0 ];
    #endif
    float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {
        return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );
    }
    vec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {
        return decodeHalfRGBA( texture2D( shadow, uv ) );
    }
    float VSMShadow (sampler2D shadow, vec2 uv, float compare ){
        float occlusion = 1.0;
        vec2 distribution = texture2DDistribution( shadow, uv );
        float hard_shadow = step( compare , distribution.x );
        if (hard_shadow != 1.0 ) {
            float distance = compare - distribution.x ;
            float variance = max( 0.00000, distribution.y * distribution.y );
            float softness_probability = variance / (variance + distance * distance );            softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );            occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );
        }
        return occlusion;
    }
    float texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {
        const vec2 offset = vec2( 0.0, 1.0 );
        vec2 texelSize = vec2( 1.0 ) / size;
        vec2 centroidUV = ( floor( uv * size - 0.5 ) + 0.5 ) * texelSize;
        float lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );
        float lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );
        float rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );
        float rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );
        vec2 f = fract( uv * size + 0.5 );
        float a = mix( lb, lt, f.y );
        float b = mix( rb, rt, f.y );
        float c = mix( a, b, f.x );
        return c;
    }
    float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {
        float shadow = 1.0;
        shadowCoord.xyz /= shadowCoord.w;
        shadowCoord.z += shadowBias;
        bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );
        bool inFrustum = all( inFrustumVec );
        bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );
        bool frustumTest = all( frustumTestVec );
        if ( frustumTest ) {
        #if defined( SHADOWMAP_TYPE_PCF )
            vec2 texelSize = vec2( 1.0 ) / shadowMapSize;
            float dx0 = - texelSize.x * shadowRadius;
            float dy0 = - texelSize.y * shadowRadius;
            float dx1 = + texelSize.x * shadowRadius;
            float dy1 = + texelSize.y * shadowRadius;
            float dx2 = dx0 / 2.0;
            float dy2 = dy0 / 2.0;
            float dx3 = dx1 / 2.0;
            float dy3 = dy1 / 2.0;
            shadow = (
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +
                texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )
            ) * ( 1.0 / 17.0 );
        #elif defined( SHADOWMAP_TYPE_PCF_SOFT )
            vec2 texelSize = vec2( 1.0 ) / shadowMapSize;
            float dx0 = - texelSize.x * shadowRadius;
            float dy0 = - texelSize.y * shadowRadius;
            float dx1 = + texelSize.x * shadowRadius;
            float dy1 = + texelSize.y * shadowRadius;
            shadow = (
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +
                texture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )
            ) * ( 1.0 / 9.0 );
        #elif defined( SHADOWMAP_TYPE_VSM )
            shadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );
        #else
            shadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );
        #endif
        }
        return shadow;
    }
    vec2 cubeToUV( vec3 v, float texelSizeY ) {
        vec3 absV = abs( v );
        float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );
        absV *= scaleToCube;
        v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );
        vec2 planar = v.xy;
        float almostATexel = 1.5 * texelSizeY;
        float almostOne = 1.0 - almostATexel;
        if ( absV.z >= almostOne ) {
            if ( v.z > 0.0 )
                planar.x = 4.0 - v.x;
        } else if ( absV.x >= almostOne ) {
            float signX = sign( v.x );
            planar.x = v.z * signX + 2.0 * signX;
        } else if ( absV.y >= almostOne ) {
            float signY = sign( v.y );
            planar.x = v.x + 2.0 * signY + 2.0;
            planar.y = v.z * signY - 2.0;
        }
        return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );
    }
    float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {
        vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );
        vec3 lightToPosition = shadowCoord.xyz;
        float dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );        dp += shadowBias;
        vec3 bd3D = normalize( lightToPosition );
        #if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )
            vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;
            return (
                texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +
                texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +
                texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +
                texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +
                texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +
                texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +
                texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +
                texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +
                texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )
            ) * ( 1.0 / 9.0 );
        #else
            return texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );
        #endif
    }
#endif
#ifdef USE_BUMPMAP
    uniform sampler2D bumpMap;
    uniform float bumpScale;
    vec2 dHdxy_fwd() {
        vec2 dSTdx = dFdx( vUv );
        vec2 dSTdy = dFdy( vUv );
        float Hll = bumpScale * texture2D( bumpMap, vUv ).x;
        float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;
        float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;
        return vec2( dBx, dBy );
    }
    vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {
        vec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );
        vec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );
        vec3 vN = surf_norm;
        vec3 R1 = cross( vSigmaY, vN );
        vec3 R2 = cross( vN, vSigmaX );
        float fDet = dot( vSigmaX, R1 );
        fDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );
        vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );
        return normalize( abs( fDet ) * surf_norm - vGrad );
    }
#endif
#ifdef USE_NORMALMAP
    uniform sampler2D normalMap;
    uniform vec2 normalScale;
#endif
#ifdef OBJECTSPACE_NORMALMAP
    uniform mat3 normalMatrix;
#endif
#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )
    vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec2 normalScale, in sampler2D normalMap ) {
        vec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );
        vec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );
        vec2 st0 = dFdx( vUv.st );
        vec2 st1 = dFdy( vUv.st );
        float scale = sign( st1.t * st0.s - st0.t * st1.s );
        vec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );
        vec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );
        vec3 N = normalize( surf_norm );
        vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;
        mapN.xy *= normalScale;
        #ifdef DOUBLE_SIDED
            bool frontFacing = dot( cross( S, T ), N ) > 0.0;
            mapN.xy *= ( float( frontFacing ) * 2.0 - 1.0 );
        #else
            mapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );
        #endif
        mat3 tsn = mat3( S, T, N );
        return normalize( tsn * mapN );
    }
#endif
#ifdef USE_SPECULARMAP
    uniform sampler2D specularMap;
#endif
#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )
    uniform float logDepthBufFC;
    varying float vFragDepth;
    varying float vIsPerspective;
#endif
#if 0 > 0
    #if ! defined( STANDARD ) && ! defined( PHONG ) && ! defined( MATCAP )
        varying vec3 vViewPosition;
    #endif
    uniform vec4 clippingPlanes[ 0 ];
#endif
void main() {
#if 0 > 0
    vec4 plane;

    #if 0 < 0
        bool clipped = true;

        if ( clipped ) discard;
    #endif
#endif
    vec4 diffuseColor = vec4( diffuse, opacity );
    ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
    vec3 totalEmissiveRadiance = emissive;
#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )
    gl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;
#endif
#ifdef USE_MAP
    vec4 texelColor = texture2D( map, vUv );
    texelColor = mapTexelToLinear( texelColor );
    diffuseColor *= texelColor;
#endif
#ifdef USE_COLOR
    diffuseColor.rgb *= vColor;
#endif
#ifdef USE_ALPHAMAP
    diffuseColor.a *= texture2D( alphaMap, vUv ).g;
#endif
#ifdef ALPHATEST
    if ( diffuseColor.a < ALPHATEST ) discard;
#endif
float specularStrength;
#ifdef USE_SPECULARMAP
    vec4 texelSpecular = texture2D( specularMap, vUv );
    specularStrength = texelSpecular.r;
#else
    specularStrength = 1.0;
#endif
#ifdef FLAT_SHADED
    vec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );
    vec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );
    vec3 normal = normalize( cross( fdx, fdy ) );
#else
    vec3 normal = normalize( vNormal );
    #ifdef DOUBLE_SIDED
        normal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );
    #endif
    #ifdef USE_TANGENT
        vec3 tangent = normalize( vTangent );
        vec3 bitangent = normalize( vBitangent );
        #ifdef DOUBLE_SIDED
            tangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );
            bitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );
        #endif
    #endif
#endif
vec3 geometryNormal = normal;
#ifdef OBJECTSPACE_NORMALMAP
    normal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;
    #ifdef FLIP_SIDED
        normal = - normal;
    #endif
    #ifdef DOUBLE_SIDED
        normal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );
    #endif
    normal = normalize( normalMatrix * normal );
#elif defined( TANGENTSPACE_NORMALMAP )
    #ifdef USE_TANGENT
        mat3 vTBN = mat3( tangent, bitangent, normal );
        vec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;
        mapN.xy = normalScale * mapN.xy;
        normal = normalize( vTBN * mapN );
    #else
        normal = perturbNormal2Arb( -vViewPosition, normal, normalScale, normalMap );
    #endif
#elif defined( USE_BUMPMAP )
    normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );
#endif
#ifdef USE_EMISSIVEMAP
    vec4 emissiveColor = texture2D( emissiveMap, vUv );
    emissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;
    totalEmissiveRadiance *= emissiveColor.rgb;
#endif
BlinnPhongMaterial material;
material.diffuseColor = diffuseColor.rgb;
material.specularColor = specular;
material.specularShininess = shininess;
material.specularStrength = specularStrength;

GeometricContext geometry;
geometry.position = - vViewPosition;
geometry.normal = normal;
geometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );
#ifdef CLEARCOAT
    geometry.clearcoatNormal = clearcoatNormal;
#endif
IncidentLight directLight;
#if ( 0 > 0 ) && defined( RE_Direct )
    PointLight pointLight;

#endif
#if ( 0 > 0 ) && defined( RE_Direct )
    SpotLight spotLight;

#endif
#if ( 1 > 0 ) && defined( RE_Direct )
    DirectionalLight directionalLight;

        directionalLight = directionalLights[ 0 ];
        getDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );
        #if defined( USE_SHADOWMAP ) && ( 0 < 1 )
        directLight.color *= all( bvec3( directionalLight.shadow, directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ 0 ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ 0 ] ) : 1.0;
        #endif
        RE_Direct( directLight, geometry, material, reflectedLight );

#endif
#if ( 0 > 0 ) && defined( RE_Direct_RectArea )
    RectAreaLight rectAreaLight;

#endif
#if defined( RE_IndirectDiffuse )
    vec3 iblIrradiance = vec3( 0.0 );
    vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );
    irradiance += getLightProbeIrradiance( lightProbe, geometry );
    #if ( 0 > 0 )

    #endif
#endif
#if defined( RE_IndirectSpecular )
    vec3 radiance = vec3( 0.0 );
    vec3 clearcoatRadiance = vec3( 0.0 );
#endif
#if defined( RE_IndirectDiffuse )
    #ifdef USE_LIGHTMAP
        vec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;
        #ifndef PHYSICALLY_CORRECT_LIGHTS
            lightMapIrradiance *= PI;
        #endif
        irradiance += lightMapIrradiance;
    #endif
    #if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )
        iblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );
    #endif
#endif
#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )
    radiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );
    #ifdef CLEARCOAT
        clearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );
    #endif
#endif
#if defined( RE_IndirectDiffuse )
    RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );
#endif
#if defined( RE_IndirectSpecular )
    RE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );
#endif
#ifdef USE_AOMAP
    float ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;
    reflectedLight.indirectDiffuse *= ambientOcclusion;
    #if defined( USE_ENVMAP ) && defined( STANDARD )
        float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );
        reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );
    #endif
#endif
    vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;
#ifdef USE_ENVMAP
    #ifdef ENV_WORLDPOS
        vec3 cameraToFrag;

        if ( isOrthographic ) {
            cameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );
        }  else {
            cameraToFrag = normalize( vWorldPosition - cameraPosition );
        }
        vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
        #ifdef ENVMAP_MODE_REFLECTION
            vec3 reflectVec = reflect( cameraToFrag, worldNormal );
        #else
            vec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );
        #endif
    #else
        vec3 reflectVec = vReflect;
    #endif
    #ifdef ENVMAP_TYPE_CUBE
        vec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );
    #elif defined( ENVMAP_TYPE_EQUIREC )
        vec2 sampleUV;
        reflectVec = normalize( reflectVec );
        sampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;
        sampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;
        vec4 envColor = texture2D( envMap, sampleUV );
    #elif defined( ENVMAP_TYPE_SPHERE )
        reflectVec = normalize( reflectVec );
        vec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );
        vec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );
    #else
        vec4 envColor = vec4( 0.0 );
    #endif
    envColor = envMapTexelToLinear( envColor );
    #ifdef ENVMAP_BLENDING_MULTIPLY
        outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );
    #elif defined( ENVMAP_BLENDING_MIX )
        outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );
    #elif defined( ENVMAP_BLENDING_ADD )
        outgoingLight += envColor.xyz * specularStrength * reflectivity;
    #endif
#endif
    gl_FragColor = vec4( outgoingLight, diffuseColor.a );
#if defined( TONE_MAPPING )
    gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );
#endif
gl_FragColor = linearToOutputTexel( gl_FragColor );
#ifdef USE_FOG
    #ifdef FOG_EXP2
        float fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );
    #else
        float fogFactor = smoothstep( fogNear, fogFar, fogDepth );
    #endif
    gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );
#endif
#ifdef PREMULTIPLIED_ALPHA
    gl_FragColor.rgb *= gl_FragColor.a;
#endif
#ifdef DITHERING
    gl_FragColor.rgb = dithering( gl_FragColor.rgb );
#endif
}